Simultaneous optimization of photons and electrons for mixed beam radiotherapy.
نویسندگان
چکیده
The aim of this work is to develop and investigate an inverse treatment planning process (TPP) for mixed beam radiotherapy (MBRT) capable of performing simultaneous optimization of photon and electron apertures. A simulated annealing based direct aperture optimization (DAO) is implemented to perform simultaneous optimization of photon and electron apertures, both shaped with the photon multileaf collimator (pMLC). Validated beam models are used as input for Monte Carlo dose calculations. Consideration of photon pMLC transmission during DAO and a weight re-optimization of the apertures after deliverable dose calculation are utilized to efficiently reduce the differences between optimized and deliverable dose distributions. The TPP for MBRT is evaluated for an academic situation with a superficial and an enlarged PTV in the depth, a left chest wall case including the internal mammary chain and a squamous cell carcinoma case. Deliverable dose distributions of MBRT plans are compared to those of modulated electron radiotherapy (MERT), photon IMRT and if available to those of clinical VMAT plans. The generated MBRT plans dosimetrically outperform the MERT, photon IMRT and VMAT plans for all investigated situations. For the clinical cases of the left chest wall and the squamous cell carcinoma, the MBRT plans cover the PTV similarly or more homogeneously than the VMAT plans, while OARs are spared considerably better with average reductions of the mean dose to parallel OARs and D 2% to serial OARs by 54% and 26%, respectively. Moreover, the low dose bath expressed as V 10% to normal tissue is substantially reduced by up to 45% compared to the VMAT plans. A TPP for MBRT including simultaneous optimization is successfully implemented and the dosimetric superiority of MBRT plans over MERT, photon IMRT and VMAT plans is demonstrated for academic and clinical situations including superficial targets with and without deep-seated part.
منابع مشابه
On Presentation of Optimal Treatment Plan in Radiotherapy of Parotid Cancer: A Comparison of Nine Techniques in Three Dimensional Conformal Radiation Therapy
Introduction: Today, radiotherapy combined with surgery in the treatment of parotid tumors widely are used specially for high grade parotid tumors. One of concern and challenge issue of radiotherapy is that the treatment of these tumors with irregular surface due to the presence of external ear and region of different physical electron density (air cavities, dense bone, soft t...
متن کاملDosimetric Characteristics of Transparent Bolus for External Beam Radiotherapy
Introduction: In radiotherapy, the bolus is often used while treating the tumor under the uneven surfaces of the patients for correcting the anatomical irregularities and increasing skin dose. Wet cotton and wet gauze are still used in developing countries, since the use of wet cotton and wet gauze has certain disadvantages, there is a need for transparent bolus which ...
متن کاملEvaluation of Accuracy and Quality assurance of external beam therapy with photons
Introduction: Receiving exact dose by the patients is vital in radiotherapy. In radiation therapy, the dosimetry of radiations is too important because of successful radiation inquires for delivering the exact dose to the target volume. This study is to evaluate the tolerances and the accuracy of calculated dose of photon beams in the treatment software system. The TECDOC1583 p...
متن کاملEnergy Optimization And Calculation Of Dose Absorption Enhancement Factor In Photon Activation Therapy
Introduction: Secondary radiation such as photoelectrons, Auger electrons and characteristic radiations cause a local boost in dose for a tumor when irradiated with an external X-ray beam after being loaded with elements capable of activating the tumor, e.g.; I and Gd. Materials and Methods: In this investigation, the MCNPX code was used for simulation and calculation of dose enhancement facto...
متن کاملEvaluating the Effects of Field Size on Beam Homogeneity Coefficient in the Superficial Radiotherapy Machine Using Empirical Method and Simulation
Introduction Superficial X-ray therapy is one of the most important treatment methods in radiotherapy especially in the treatment of superficial skin lesions (Up to 300 kVp). Quality of the X-ray beam that can be expressed by Half-Value Layer (HVL), are important indices for this type of treatment effective energy of photon and Homogeneity Coefficient (HC). Materials and Methods The HC of the s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physics in medicine and biology
دوره 62 14 شماره
صفحات -
تاریخ انتشار 2017